Tentukan kuasa titik p
(1,3) pada lingkaran x2 + y2 – 2x – 4y -20. Tentukan pula
letak titik p terhadap lingkaran tersebut…..
Jawaban : X21
+ y21 + AX1 + By1 + C = 0
                  (1) + (3)2 – 2.1-  4 (3) – 20  
= 0                             
   
                          1 + 9 
– 2-  12 – 20   = 0  
                                  10 
– 2-  12 – 20   = 0
                                                       -24  
= 0
Tentuka persaman garis kuasa lingkaran
dimensi L1 = x2 + y2 = 25, L2 = (x2 + y2
– 2x – 4y- 4)
Jawaban : 
                  L1 = x2 + y2
= 25    
       
          L2 = (x2 + y2 – 2x –
4y- 4)  
              L1 - L2 = 0
x2 + y2 - 25  -  (x2
+ y2 – 2x – 4y- 4) = 0  
x2 + y2 - 25  -  x2
+ y2 + 2x + 4y + 4 = 0  
                                       2x + 4y
- 21= 0 
 L1 - L2 = 0
L1 = x2 + y2 + x +
y – 14 = 0
L2 = x2 + y2 = 13
L3 = 
x2 + y2 + 3x – 2y – 26 = 0
 L1 - L2 = 0
x2 + y2 + x + y –
14 - x2 + y2 -13 = 0
                            x + y – 14 – 13 = 0
                                      x + y – 1
= 0
 x
+ y – 1 = L3
 x
+ y – 1 = x2 + y2 + 3x – 2y – 26 = 0
= x2 + y2 + 3x –
2y – 26 – x – y + 1
= x2 + y2 + 2x –
3y – 25 

 
Tidak ada komentar:
Posting Komentar